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Abstract. The infrared absorption spectrum of a hydrogenated Si(100)2 X 1 surface is cal- 
culated with a constant-temperature molecular dynamics technique (NosC dynamics). The 
equations of motion embody radial and angular forces between Si atoms, encompassing 
previous calculations based on force constants. A novel pair potential determined by ab 
initio quantum chemistry techniques is used for the interactions between H and Si atoms. 
The spectra obtained, free of any adjustable parameters, compare well with experiment and 
with previous numerical works modulo a shift of 200 cm-' towards low frequencies. This was 
noticed previously by Tully and co-workers. The origin of the shift is investigated in detail. 

1. Introduction 

Hydrogen interactions with silicon surfaces play an important role in many fields. The 
H-Si surface is an interesting system [ 11 for theoretical and experimental studies of the 
various mechanisms underlying chemisorption processes. Vibrational spectroscopy of 
clean and hydrogenated silicon surfaces provides elements for understanding thermal 
and laser-induced dynamical processes at silicon surfaces [2]. In LEED or EELS inves- 
tigations [3], knowledge of Si-H interactions yields valuable information about the 
structure of the Si surface and its various reconstruction patterns. 

Initially, the purpose of this work was to study the IR spectrum of the hydrogenated 
Si(100)2 X 1 surface in order to understand the origin of the discrepancies that arose 
between previous MD calculation and experimental results obtained by Tully and co- 
workers [4]. A more accurate calculation set-up is built on the basis of three-body 
potential [5] for the Si atoms and a novel two-body potential for the Si-H surface pairs 
obtained by quantum chemistry techniques [6] (cf. Appendix 1). Thestatistical ensemble 
chosen for the simulation is the constant-temperature ensemble (NosC ensemble [7]), 
This choice, we believe, is the most natural in that a continuous energy flow is set up 
between the surface and the bulk, acting as a heat reservoir. 

The advantage of Nos6 dynamics over other dynamics lies in the fact that the 
equations of motion include the temperature dependence in a straightforward way. 
Hence, no extra forces are added to the dynamics, depending on unknown parameters 
that have to be determined in order to ensure temperature consistency. In addition, 

0953-8984/89/264129 + 12 $02.50 @ 1989 IOP Publishing Ltd 4129 



4130 F Ladouceur et a1 

Figure 1. Sketch of a hydrogenated silicon slab. There 
are three Si layers each containing 16 Si atoms (large 
circles). The 16 H atoms (small circles) are linked to the -- 
first Si layer and the third Si layer has its Si atoms sitting 
at the crystal position.; o i  the Si(100) plane. The iul l  
circles represent thc Si 3toms of the crystal. 

Hoover [8] has also shown that Nose equations of motion are the only ones compatible 
with the canonical (constant-temperature) ensemble. 

This paper is organised as follows: § 2 contains a detailed description of the system 
under study, the geometry of the Si( 100) surface and the configuration used for the H- 
Si interaction. In 8 3  we describe the equations of motion obtained from the Nos6 
dynamics method. Section 4 deals with the extraction of IR spectroscopic data from the 
constant-temperature simulation and the various definitions of the dipole moments we 
need for calculating the IR absorption. In § 5 we give details of the simulations, and 
display our results and conclusions in § 6. Finally, the Si-Si potential (taken from the 
work of Stillinger and Weber [5]) has been used in its separable form following Biswas 
and Haman [9] in order to reduce the computational effort. A novel Si-H interaction 
has been generated with quantum chemical methods. Both potentials are discussed in 
detail in the appendices. 

2. Description of the system 

Nos6 dynamics calculations were carried out for a slab containing 48 silicon (Si) atoms 
and 16 hydrogen (H) atoms. The configuration of these atoms is sketched in figure 1. A 
set of 16 H atoms is linked to an uppermost layer of 16 Si atoms. The second and third 
layers beneath the surface are composed of 16 Si atoms each. The overall slab is 
‘embedded’ in a Si matrix. This is modelled by fixing the Si atoms of the third Si layer at 
the position occupied by the Si atoms of a crystalline unreconstructed Si( 100) surface. 
The occurrence of non-saturated Si-Si bonds (dangling bonds) on the uppermost layer 
changes the underlying crystallographic structure significantly. One goes from the bulk, 
where tetrahedricity of the Si units is respected (diamond structure), to a reconstructed 
Si surface. The Stillinger-Weber potential predicts a symmetric (2 X 1) reconstruction 
for the Si(100) surface [lo]. Flat dimer formation [lo,  111 is typical of this reconstructed 
surface sketched in figure 2. It is on this reconstructed surface that the 16 hydrogen 
atoms were later added for performing the Nos6 simulation. 

Holding the Si layer in place, however, has an important consequence: the slab is 
totally disconnected from the bulk, which no longer acts as a heat reservoir. In the Nos6 
approach, this is overcome by introducing an additional degree of freedom (the proper 
way of introducing this degree of freedom in the dynamics is explained in 9 3) playing 
the role of damping and random forces such as those arising from the thermal interactions 
between the atoms of the slab and the heat reservoir. The set of the resulting Nose 
equations of motion used in the simulations is given in § 3. 
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Figure 2. Sketch of (a) the unreconstructed Si 
surface used as the initial configuration of the 
Si atoms, and (b)  the reconstructed Si surface 
obtained from Langevin dynamics simulation. 
The deeper the atom, the smaller the radius of the 
circle representing it. In (a )  and ( b ) ,  a = 5.43 A. 
The unreconstructed surface has a nearest bond 
length of 2.35 A and a second nearest-neighbour 
distance of 3.84 A. The first layer of the recon- 
structed surface has a dimer bond lengthof 2.41 A 
while the other bondlengths have not significantly 
changed after reconstruction. 

Figure 3. The Si-H potential energy (in hartrees) 
obtained from quantum chemical techniques as a 
function of the length of the Si-H bond (in atomic 
units). 1 au = 1 Bohr radius = 0.52917706(44) X 

lo-* cm; 1 Hartree = 2 Ryd, 1 Ryd = 

13.605 804(36) eV. 

3. Equations of motion 

The procedure used by Nos6 [7] to model the system in contact with a heat bath is to 
introduce a variable, s( t ) ,  effecting velocity scaling of all particles such that: 

where ui( t )  is the true velocity of particle i and r, is the solution obtained from the 
equations of motion. The additional degree of freedom s enters the Lagrangian of the 
system along with an associated conjugate momentum p s .  From the Lagrangian one 
obtains, by a Legendre transformation, the following expression for the Hamiltonian 

u,( t )  = s(t)  d r i l d t  (1) 

[71: 

where the p i  are the conjugate momenta of the r,. One has 
p i  = mis2ii 

ps = Qi 
In equations (2) and (3a) ,  the quantity m, is the real mass of particle i and the parameter 
Q, which is determined below, plays the role of inertia for the variable s( t )  and controls 
its time dependence. In equation (2) V({ri}) is the interaction potential which depends 
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only on the set of individual positions of the particles (i.e., {ri} = { r l ,  r2, . . . , rN}),  f i s  
the number of degrees of freedom, kB is Boltzmann’s constant, N is the total number of 
atoms, and Tis temperature. The Hamilton equations yield 

ii =pi/mis2 Ci = --aV/ari = p S / Q  

Eliminating conjugate momenta from the above system gives 

and 

( f  + N 1 
S’ = - misliiI2 - 

Q i = l  Qs 

The fundamental point of the Nose approach is the equivalence between the micro- 
canonical partition function of the system augmented by the incorporation of the s(t)  
variable in the dynamics and the canonical partition function of the system exempt from 
any such additional degree of freedom. The canonical average value of any thermo- 
dynamic quantity of interest, G,  can thus be computed via the usual expression: 

(G) =y /d rexp( -z )G( I ‘ )  1 

k B  

where Zis the canonical partition function, X = “ae({r,}, (p,}, 1 , 0 ) ,  r represents a classical 
trajectory in phase space, and the integration is done over all phase space. 

The equations of motion for the H atoms are obtained in the following way. Assuming 
that the uppermost layer of the slab consists of independent Si-H monomers, the 
equation of motion of a given hydrogen interaction with a companion silicon atom 
through a pair potential VSI-H is: 

= - ( l / m  H ) a VS1-H /ar, (7)  

where mH is the atomic mass of a H atom. The index i refers to the ith hydrogen of 16 
interacting with the Si surface. The classical trajectories are obtained from integration 
of equation (5) and (7) where the Si-Si potential energy, V, is modelled using a modified 
Stillinger-Weber approach [5] and the two-body potential energy, VSInH, has been 
calculated by means of quantum chemistry techniques [6]. The Stillinger-Weber poten- 
tial embodying a three-body force essential for reproducing the tetrahedral structure of 
Si entails computation of N3 terms arising from all N! /3 ! (N  - 3)! triplets among N 
Si atoms. This potential is separable into two-body interactions breaking down the 
computational number of operations to N2 per simulation step. This separability is 
discussed in Appendix 2 after discussion of the pair potential VS1-H in Appendix 1 (see 
figure 3). An explicit calculation of the three-body forces as sums of two-body terms is 
also presented in Appendix 2. The position of each atom can be computed along a given 
classical trajectory, yielding the dipole moment from which the IR absorption spectrum 
can be calculated. The precise definitions of the various dipole moments we used are 
given in § 4. 
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4. Dipole moments and the IR absorption spectrum 

The intensity of the IR absorption spectrum is computed from the expression [ 121 
1 r r  

Z(w) = dt (M(0)  - M ( t ) )  e-'"' 
2Jr -m 

where M ( t )  is the dipole moment vector of the system. Each contribution to the scalar 
product corresponds to thex, y or z polarisation and the brackets in equation (8) denote 
the ensemble average. A more practical expression can be obtained from the Wiener- 
Khintchine theorem yielding the following equivalent expression for the spectrum inten- 
sity [13]: 

Two mechanisms are used to compute the dipole moment M ( t ) .  The first one is the 
mechanism proposedin [14] due to deviationfromperfect tetrahedricity through stretch- 
ing of the Si-Si bond. Phenomenological arguments yield the following expression for 
the resulting dipole moment: 

where k(i, j ) ,  i # j indicates that the sum runs over all the nearest neighbours i and j of 
atom ksuch that i # j ,  U,, = U ,  - U,, where U,,,, is the displacement vector of the atom 
n(m) from its equilibrium position, and r,, is the unit vector between the equilibrium 
positions of the atoms n and m. The scalar products on the RHS of equation ( 7 )  represent 
compressed (negative scalar product) or extended (positive scalar product) bonds. 
Actually, expression (10) refers to the dipole moment resulting from the charge 
rearrangement from extended to compressed bonds. The contribution of the bending 
(or wagging) modes, however, gives an expression of the dipole moment which is more 
sensitive to angular distortions betwen adjacent Si-Si bonds, resulting in a deviation 
from perfect tetrahedricity. The mechanism of Winer [15] provides such an expression. 
One has 

It is easily shown that (i) two terms with the same indices of equations (10) and (11) are 
mutually perpendicular, and (ii) both expressions (i.e., M ,  and Mb) vanish identically 
in the case of pure crystalline Si (perfect tetrahedral diamond structure). They are 
convenient expressions accounting for the contribution to the stretching and bending 
modes of the IR absorption. 

5. Details of the simulation 

Periodic boundary conditions in the xy plane (the direction z is along the normal to the 
surface of the system) are used to eliminate edge effects. The upper surface is assumed 
to be free while the Si atoms of the bottom Si layer are held fixed to the position of the 
Si bulk atoms in the (100) plane. The linear dimension of the cell is 15.358 A. The quasi- 
classical temperature obtained from the expression [4] : 

where h is Planck's constant divided by 2n and wD is the Debye frequency taken to 
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be 500 cm-' [lo], is TQc = 330 K for all simulations (this corresponds to the classical 
temperature T = 100 K). The integration time-step is 7.5 X loe4 ps, and a typical Nos6 
dynamics simulation takes up 40000 time-steps. Simple dimensional analysis arguments 
show that the parameter Q occurring in equations (2), (3b), (4), and (5b) is of the order 
of 

Q t?(f + 1 ) k ~  TQC (13) 
where t, is a characteristic time of a few picoseconds. A first simulation is carried out 
without the hydrogen atoms until an equilibrium configuration is reached. The starting 
configuration is sketched in figure 2(a). The nearest-neighbour bond length is 2.35 A 
while the second-neighbour distance is 3.84 A (Si(100) unreconstructed surface). The 
system is then set to evolve under the action of the Si-Si interaction until equilibrium is 
reached (the temperature is set to TQC = 330 K). It appears from our study and that of 
Weber [lo] that perfect reconstruction is very sensitive to the initial positions and 
velocities. These may be chosen arbitrarily such that a perfect Si(100)2 X 1 recon- 
struction is obtained. Since the reconstruction time is a long process as far as molecular 
dynamics (MD) is concerned, one has to use a method such as that of steepest-descent 
[lo] or a stochastic (Langevin) integration scheme (which strongly perturbs the initial 
surface by the action of random forces) in order to obtain the reconstructed surface in a 
reasonable time. Since we are not interested in the process of reconstruction as such, 
but rather in the IR absorption spectrum, we therefore used a starting configuration for 
the Si atoms obtained from Langevin simulation [6,16] and proceeded from there. This 
yielded the Si(100)2 x 1 reconstructed surface of figure 2(b) whose parameters are in 
good agreement with those obtained by Weber [lo] (see also Abraham and Batra [ l l ]  
and Lucchese and Tully [4]). The average distance between two Si atoms in a given 
dimer is 2.41 A, while the bond length between atoms in the first and second layers is 
left unchanged. Actually, the displacements of the atoms during reconstruction are 
somewhat smaller than those observed previously [4]. 

The hydrogen atoms are introduced once thermal equilibrium is reached. In fact, 
these atoms are introduced such that they form 16 individual Si-H bonds with the Si 
atoms of the upper surface of the reconstructed Si(100)2 X 1 surface. The equations of 
motion (5) are integrated by a modified second-order predictor-corrector [17] and the 
dipolemomentsM, andMb (cf. equations (10) and (11)) are computed along the classical 
trajectory. The use of equation (9), together with the fast Fourier transform technique, 
then yields the absorption spectrum. 

6. Results 

We adopt the following nomenclature for the spectra obtained. Those obtained from 
the Alben et a1 [14] formula and due to bond-stretching absorption are called R-type 
dipole moments Ma (equation (lo)), whereas those obtained from Winer [ 151 formula 
ane due to bond-bending absorption dipole moments Mb (equation (11)) are called 0- 
type. 

Before the surface is hydrogenated, one has to verify that no absorption will occur 
at the clean surface for the frequency range 2000-2500cm-l, as confirmed experi- 
mentally [4]. 

Once this check is successful, we are ready to explore the 2000-2500 cm-' region 
which is of experimental interest since it has been studied accurately with high-resolution 
techniques [4], and the check serves for calibrating the apparatus and checking the 
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Figure 4. Infrared absorption spectrum (arbitrary units) of the hydrogenated Si(100)2 X 1 
surface as a function of frequency (in cm-') in the range 2310-2360 cm-'; ( U )  using M ,  as 
diopole moment, (b )  using Mb. In both cases, the total simulation time is 40 ps. 

nature of the surface to be studied since it is known that no absorption should occur for 
the clean surface in this frequency range. Any absorption in this region, after the addition 
of H ,  is due solely to the interactions between H and the Si surface. 

In figure 4(a) the R-spectrum is displayed for the hydrogen-covered Si(100)2 X 1 
surface in the region of experimental interest. The corresponding @-spectrum shown in 
figure 4(b) shows the same features present in the R-spectrum at almost the same 
frequency values. Both spectra show the Si-H antisymmetric stretch at 2338 cm-' and 
the Si-H symmetric stretch at 2343 cm-' peaks. Two comments are in order, however. 
First, the magnitude of the intensity observed in the @-spectra in the range 2000- 
2500 cm-' is always much weaker than the corresponding one in the R-spectra because 
of the relative angular stiffness of the Si-H bond. Second, the large peak consisting of 
two components differs slightly from those measured experimentally and obtained by 
microcanonical ensemble molecular dynamics techniques or Langevin simulations by 
Tully and co-workers [4]. 

Here again, as in [4], the spectrum must be shifted by -200 cm-' towards lower 
frequencies in order to achieve good agreement with experimental results. This fact was 
predictable since a linearisation around the minimum of the Si-H potential gives a 
resonance frequency of 2320 cm-' when one takes into account the reduced mass of the 
Si-H system. It should be noted here that, since the Si-H potential was obtained 
accurately with a realistic (100) silicon surface, there must exist a physical mechanism 
that explains this shift. Hence, it is doubtful that a 10% uncertainty on the potential 
coefficients would account in both our case and that of Tully and co-workers for the 
200 cm-' shift, as stated in [4]. 

The origin of this shift is not due to our neglect of dipole-dipole interactions between 
the Si-H bonds since the largest dipole-dipole interaction is the order of 3 cm-' (see 
Chabal and Raghavachari [18]). It is worth noting that the results presented here are 
typical: different total simulation times and trajectories in phase space (cf equation (6)) 
yield only small peak shifts (a few cm-l). An average of these results will not yield the 
200cm-' shift observed experimentally [4]. The origin of this shift is still an open 
question. 
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Figure 5.  Infrared absorption spectrum (arbitrary units) of the hydrogenated Si(100)2 x 1 
surface as a function of the frequency in the range 2310-2360 cm-' using M ,  for the dipole 
moment for two simulation times: (a) total simulation time is 35 ps, ( b )  25 ps. 

Furthermore, we believe the Si-H symmetric stretch peak split-off is due to our use 
of a fully anharmonic pair potential VS1-H in contrast to [4]. By comparing two R-spectra 
(figures 5(a) ,  5 ( b ) )  at long and short total simulation times corresponding to high and 
low resolutions, respectively, one can verify that splitting occurred not only in the 
symmetric stretch peak but also in the antisymmetric stretch lower-frequency peak. 

The spectrum of figure 5(b) obtained after only 25 ps total simulation time is the one 
with the closest resemblance to experimental results. Although this might be considered 
coincidental, one might argue that the same result is likely to be obtained by averaging 
a number of times the long time simulation results. 

Previously, Tully and co-workers [4] interpreted their experimental results with a 
standard microcanonical molecular dynamics simulation and a Langevin simulation 
method. Their initial conditions, integration schemes, forces and dipole moments, are 
basically different from ours. We start from an unreconstructed surface and allow it to 
reconstruct by itself through the Stillinger-Weber interaction, whereas Tully and co- 
workers [4] start from the reconstructed surface. In the force calculations we use the 
Stillinger-Weber three-body interaction between Si atoms and use quantum chemical 
techniques to determine a novel ab initio Si-H interaction potential, whereas Tully and 
co-workers [4] use a force field for the Si-Si interaction derived from phonon spectra 
calculation by Tubino and co-workers [19]. Morevoer, Tully and co-workers [4] model 
the Si-H interaction with diagonal and off-diagonal stretch and bend force constants 
derived from ab initio Hartree-Fock calculations for a Si2H6 cluster. On the other hand, 
the anharmonic interaction potentials we use have the drawback of inducing a fine 
structure at high resolution in the absorption spectrum. 

The ensemble we select is canonical and the equations of motion we integrate are 
obtained from the Nos& method whereas Tully and co-workers [4] perform the Langevin 
simulation with Beeman algorithm [20] and the microcanonical ensemble calculation by 
standard molecular dynamics algorithms. 

The dynamic dipole moments used by Tully and co-workers [4] to calculate the IR 
absorption were extracted from the Si2H6 cluster calculation after an enlargement of the 
basis set and inclusion of additional electron correlation terms. This approach is different 
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from ours (described in detail in 8 4). In conclusion, the present work shows that starting 
from different models (interaction potentials, dipole moment definitions etc) MD may 
produce slightly different results as far as it regards spectra which are probably the most 
time-consuming data to extract from a system at equilibrium, especially when one aims 
for high-resolution studies. The model we have selected was as realistic and accurate as 
possible, but was unable to correct the existing discrepancies between MD spectra and 
experimental ones. 

Once the origin of this discrepancy is solved, a possible extension of our work is the 
case of molecular hydrogen interacting with a crystalline or amorphous Si surface. This 
is of interest for the understanding of the details of the bonding between H and Si and 
may explain surface kinetics effects at the origin of water dissociation on silicon surfaces 
or the microscopic origin of light-induced changes in a-Si : H [21]. 
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Appendix 1 

In order to model the H-Si (100) interaction, we take a cluster of 11 Si atoms large enough 
to account for the effects of nearest neighbours on this interaction. The unreconstructed 
(100) uppermost face consists of five Si atoms among which the central one is to be the 
adsorption site of the hydrogen atom. The latter is approaching the surface along the 
normal to the surface above the central uppermost Si. The other surrounding Si atoms 
are saturated by hydrogens and occupy the same position as in the crystal. 

The total energy calculations were done with a linear combination of Gaussian-type 
orbitals-local spin density (LCGTO-LSD) method. This method is based on Dunlap’s 
LCAO-X, method [22] with an exchange correlation potential of the Vosko-Wilk-Nusair 
type [23]. The interaction potential between H and a single Si belonging to the surface 
is extracted from three different total energies: 

(A l . l )  
where ET(r) is the total energy of the silicon cluster with H adsorbed at a height r above 
the surface. The second term on the RHS of equation (Al . l )  is the total energy of the 
cluster without H but with a fictitious atom having zero electrons, located at the same 
height as the adsorbed hydrogen (Hads) and described by the same basis set as HadS. This 
is done in order to reduce basis superposition effects on the calculation of VH-sI(r). 
Finally, EH is the total energy of the isolated H atom. 

The interaction potential obtained and shown in figure 1 yielded an equilibrium H- 
Si distance of 2.85 au (21.5 A), which compares well with the experimental value of 
1.48 A [6]. In addition, the Hvibrationfrequency2182 cm-’obtained from the curvature 

v H - S ~ ( r )  = E T ( r )  - E?(r) - E H  
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around the minimum of V H - & ( Y )  agrees reasonably well with the experimental value of 
2095 cm-'. 

VH-s i ( r )  = a l  + a2r-l  + a3r-2 + a4rW3 + a5r-4 + a 6 r 7  + a7+ (A1.2) 

where a ,  = 0.147417, a2 = -5.42700, a3 = 63.16500, a4 = -297.058, as = 499.0360, 
a6 = -2156.29 and a ,  = 2462.380. The units are such that r is expressed in atomic units 
and VH-si(r) in hartrees. 

TheXz test for the fit yields a value of 0.756 X lo-'. Note that other functional forms 
were tested such as Morse or Rydberg type [24]. The x2 test value was always higher 
than the present one. Besides, the polynomial form of v H - S , ( r )  allows a fast calculation 
of the forces in the simulation. 

An accurate polynomial fit to the data obtained for VH-si(r) is given by 

Appendix 2 

The potential energy of the Si-Si bond has two- and three-body contributions. One has 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

In this last expression, U = jut. The values of the parameters E ,  A , B , p ,  q and a are given 
below. The three-body potential is given by 

(A2.5) v3 ( r i  7 ' 1  7 r k )  = Ef3 ( r t / 0 7  rk/') 

where [ll] 

f3(ui > U] , u k )  = h ( u ,  7 u , k  7 e ~ i k )  + h ( u ] ~  7 U ] k  7 e q k )  + h(Uki  , uL] 7 

The auxiliary functions h ( .  . .) are given explicitly by 

(A2.6) 

otherwise 
(A2.7) 

where 1 9 , ~ ~  (= 6 k q )  is the angle between the vectors ull and uik and where U,, = 1 unm1. Note 
that in the case of the diamond structure, 4 -t cos e ] l k  = 0. The values of the parameters in 
equations (A2.2) , (A2.4) , (A2.5) , and (A2.7) are A = 7.049 556 277, B = 0.602224 558 4, 
p = 4, q = 0, a = 1.8, A = 21.0, a = 1.2, o = 2.0951 A and E = 3.4723 X J. 
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The forces acting on atom n due to two- and three-body potentials are obtained from 
the gradient of the total potential with respect to the coordinates of the atom in question. 
One obtains 

(A2.8) E a f i ( u n j >  F f )  = - - 
O j + n  au,,j 

U n j  

where the unit vector is defined by 

and, using the separability of the functions h(.  . .), 

one obtains, after lengthy but straightforward algebra, 

= u n j l u n l  r n j l r n i  

h(ui] 7 u i k  9 @irk )  = g(ui])g(uik)(~ + cos e j i k ) 2  

where CO = 4, C1 = C2 = #, and c k  = 0 for k > 2, and where 

= g ( u i j ) y k m ( e i j ,  q i j )  
j t i  

VTexp[a/(u - a)] u < a  

otherwise. 

(A2.9) 

(A2.10) 

(A2.11) 

(A2.12) 

- icos 6 ' n l [ p r Y k m + l ( i i f l j )  e-'"ni + p k m Y k m - l ( & ] )  e'qv]} Gn1 

+ - [ p r Y k m + l ( i i f l , )  e-'pw - p k m Y k , , - l ( i i , )  e1"n~]Onl (A2.13) g ( u , )  
2u, 

where 
/3r = [(k - m)(k + m + 1)]1'2 

and where the notation used for the spherical harmonics is 

The unit vectors in equations (A2.8), (A2.10) and (A2.13) are the local spherical unit 
vectors. The expression (A2.13) was first obtained by Biswas and Hamann [9]. The sign 
of the first term on the RHS of (A2.13) differs from their expression, however. The second 
term on the RHS of (A2.13) also differs: one has i times cos 6' instead of simply cos 0, as 
in the corresponding expression of Biswas and Hamann. 

The separability of the Stillinger-Weber potential was not exploited previously. By 
exploiting its separability following the work of Biswas and Hamann [9] the com- 
putational effort is reduced to ,@ from N3,  where Nis the number of atoms considered. 

Y k m ( u n l )  = Y k m ( e n j ,  q n ] ) *  
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